surrounded by nine O atoms [three $\mathrm{O}(1)$, three $\mathrm{O}(2)$ and three $O(3)$] at a mean distance of $2.741 \AA$, whereas the $\mathrm{Pb}(2)$ atom $[6(h)$ position] is surrounded by six O atoms $[O(1), O(2)$ and four $O(3)]$ at a mean distance of $2.570 \AA$.

The shape of the PO_{4} tetrahedron is almost regular. The mean $\mathrm{P}-\mathrm{O}$ distance of $1.588 \AA$ is rather long compared with those of other apatites, for example $1.527 \AA$ in $\mathrm{Cd}_{5} \mathrm{OH}\left(\mathrm{PO}_{4}\right)_{3}$ (Hata et al., 1978) and $1.540 \AA$ in $\mathrm{Ba}_{5} \mathrm{Cl}\left(\mathrm{PO}_{4}\right)_{3}$ (Hata, Aoki, Marumo \& Iwai, 1979). The $\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$ and $\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$ bond angles are larger than the $\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$ and $\mathrm{O}(3)-$ $\mathrm{P}-\mathrm{O}(3)^{\mathrm{iii}}$ angles, as observed in chlorapatites and hydroxyapatites.

The edge length of the triangle formed by $\mathrm{Pb}(2)$ is $4.303 \AA$, whereas those in $\mathrm{Ba}{ }_{5} \mathrm{Cl}\left(\mathrm{PO}_{4}\right)_{3}$ (Hata et al., 1979) and $\mathrm{Sr}_{5} \mathrm{OH}\left(\mathrm{PO}_{4}\right)_{3}$ (Sudarsanan \& Young, 1972) are 4.508 and $4.284 \AA$ respectively. The size of the triangle seems normal for an apatite structure, though anions at the ($0,0, z$) sites are completely missing in the present crystal.

We are very grateful to Professor M. Kato of Tokyo Institute of Technology who allowed us to use an automated four-circle diffractometer. Thanks are due to Associate Professor H. Imai of Tokyo Institute of

Technology for his valuable suggestions concerning the IR experiment, and Dr T. Hayashi of Tokyo Institute of Technology for his advice during the chemical analysis. Computations were carried out on the M-180 (HITAC) Computer at the Computation Center of Tokyo Institute of Technology.

References

Bhatnagar, V. M. (1971). Rev. Roum. Chim. 116(10), 1513-1528.
Brixner, L. H., Bierstedt, P. E., Jeap, W. F. \& Barkley, J. R. (1973). Mater. Res. Bull. 8, 497-504.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Engel, G. (1973). J. Solid State Chem. 6, 286-298.
Hata, M., Aoki, H., Marumo, F. \& Iwai, S. (1979). Acta Cryst. B35, 2382-2384.
Hata, M., Okada, K., Акao, M., Аoki, H. \& Iwai, S. (1978). Acta Cryst. B34, 3062-3064.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Sakural, T. (1967). Universal Program System for Crystallographic Computations. Crystallographic Society of Japan.
Sudarsanan, K. \& Young, R. A. (1972). Acta Cryst. B28, 3668-3670.
Tokonami, M. (1965). Acta Cryst. 19, 486.

Acta Cryst. (1980). B36, 2130-2132

Barium Diiodate

By Václav Petríčéek and Karel Malý
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, 18040 Praha 8, Czechoslovakia

and Bohumil Kratochvíl,* Jana Podlahová and Josef Loub
Department of Inorganic Chemistry, Charles University, Albertov 2030, 12840 Praha 2, Czechoslovakia

(Received 21 March 1980; accepted 22 April 1980)

Abstract. $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$, monoclinic, $\mathrm{C} 2 / c, a=13.638$ (9), $b=7.979$ (2), $c=9.036$ (6) $\AA, \beta=133.62(4)^{\circ}, V=$ 711.8 (6) $\AA^{3}, Z=4, D_{x}=4.71, D_{m}=4.73 \mathrm{Mg} \mathrm{m}^{-3}$ (pycnometrically under xylene at 296 K), $\mu\left(\mathrm{Mo} K_{\alpha}\right)=$ $14.5 \mathrm{~mm}^{-1}$. $R=0.055$ for 1036 reflections. The structure consists of pyramidal IO_{3}^{-}anions and Ba^{2+} cations. The environment of each I atom is completed by two O atoms from two other IO_{3}^{-}ions, so the resulting polyhedron can be described as a distorted trigonal bipyramid. Ba^{2+} cations have ten O neighbours.

[^0]0567-7408/80/092130-03\$01.00

Introduction. Single crystals of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ were prepared by hydrothermal synthesis from an oversaturated aqueous solution of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ at 473 K . Systematic absences of the reflections $h k l$ for $h+k=$ $2 n+1$ and $h 0 l$ for $l=2 n+1$ correspond to space group $C 2 / c$ or $C c$. The former was chosen on the basis of the successful refinement of the structure. The cell dimensions were refined from 28 reflections centred on the diffractometer. A crystal $0.07 \times 0.08 \times 0.5 \mathrm{~mm}$ was chosen for intensity measurements on a Hilger \& Watts four-circle diffractometer. Mo $K a$ radiation was used. 1036 independent reflections were measured. Only 999 of them were considered as observed with $I \geq$ (c) 1980 International Union of Crystallography

Table 1. The final positional parameters $\left(\times 10^{3}\right)$

	x	y	z
Ba	0	$358 \cdot 6(1)$	250
Ba	$188.09(8)$	$33.9(1)$	$178 \cdot 8(1)$
I	$186(1)$	$89(1)$	$371(2)$
$\mathrm{O}(1)$	$1857(1)$	$-49(1)$	$346(2)$
$\mathrm{O}(2)$	357		
$\mathrm{O}(3)$	$87(1)$	$-157(1)$	$78(2)$

$1 \cdot 96 \sigma(I)$, where $\sigma(I)$ was derived from counter statistics. Data were corrected for Lorentz and polarization factors and for absorption.

The structure was solved by Patterson and Fourier techniques. The parameters were refined by full-matrix least squares with a local version of ORFLS (Busing, Martin \& Levy, 1962). $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was minimized, where $w=1 / \sigma^{2}\left(F_{0}\right)$. In the final cycle no parameter shift was >0.02 times its e.s.d. Unobserved reflections were not used in the refinement. The final R $=0.055\left(R_{w}=0.075\right)$ for all reflections and $0.054\left(R_{w}\right.$ $=0.075$) for the observed reflections.* The maximum peak in the final difference map was $1.9 \mathrm{e} \AA^{-3}$ located $1 \cdot 11 \AA$ from the Ba atom. The tabulated values (International Tables for X-ray Crystallography, 1974) of the scattering factors for Ba, I and O and real and imaginary dispersion corrections for Ba and I were used in the calculations. The final positional parameters are given in Table 1.

Discussion. The polyhedron of O atoms around the I atom in divalent metal iodates can be characterized in some detail from a number of known crystal structures of these compounds. The structures show that the trigonal pyramidal ion IO_{3}^{-}(with $\mathrm{I}-\mathrm{O}$ distances from 1.786 to $1.874 \AA$) is completed by two, three or four further O atoms ($\mathrm{I}-\mathrm{O}$ from 2.577 to $3.209 \AA$) belonging to adjacent iodate anions with formation of the following geometrical arrangements of the iodate polyhedron: most frequently, a distorted octahedral arrangement is formed with $\alpha-\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}$ (Liminga, Abrahams \& Bernstein, 1975), $3 \mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}$ (Ghose \& Wan, 1974), $\mathrm{CuIO}_{3}(\mathrm{OH})$ (Ghose, 1962), $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ (Ghose, Wan \& Wittke, 1978), $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Braibanti, Manotti Lanfredi, Pellinghelli \& Tiripicchio, 1971), $\mathrm{Cd}\left(\mathrm{IO}_{3}\right)_{2}$ (Bach \& Küppers, 1978), $\mathrm{Ni}\left(\mathrm{IO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Abrahams, Bernstein, Elemans \& Verschoor, 1973), $\mathrm{Ni}\left(\mathrm{IO}_{3}\right)_{2}$.$4 \mathrm{H}_{2} \mathrm{O}$ (Elemans \& Verschoor, 1973) and α-Co$\left(\mathrm{IO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Elemans \& Verschoor, 1973); a distorted trigonal bipyramid is formed with $\gamma-\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}$ (Liminga, Booles, Ghose \& Wan, 1978) and $3 \mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$; a distorted pentagonal bipyramidal

[^1]arrangement with $\mathrm{Sr}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Manotti Lanfredi, Pellinghelli, Tiripicchio \& Tiripicchio Camellini, 1972), $\gamma-\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}, \mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ or irregular polyhedron with $3 \mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}$.
The interatomic distances and angles in the structure of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ are summarized in Table 2. Every I atom is surrounded by five O atoms in a distorted trigonal bipyramidal arrangement (Fig. 1). The next nearest O atoms are at 3.36 (1) $\left[\mathrm{I}-\mathrm{O}\left(2^{\mathrm{v}}\right)\right]$ and 3.32 (1) $\AA\left[\mathrm{I}-\mathrm{O}\left(3^{\mathrm{vi}}\right)\right]$. Compared with data for other divalent metal iodates, these distances are certainly too long for O atoms to be assumed as completing the iodine polyhedron to form some of the configurations mentioned above. A comparison of the $\mathrm{I}-\mathrm{O}$ distances in $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ with other structures where a trigonal bipyramid is formed, $\gamma \mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{I}-\mathrm{O} 1 \cdot 786,1.833$,

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$
Symmetry code

(i)	$\bar{x}, y, \frac{1}{2}-z$
(ii)	$x, \bar{y}, z-\frac{1}{2}$
(iii)	$\frac{1}{2}-x, \frac{1}{2}-y, 1-z$
(iv)	$x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$

(v) $x-\frac{1}{2}, y+\frac{1}{2}, z$
(vi) $\frac{1}{2}-x, y+\frac{1}{2}, \frac{1}{2}-z$
(vii) $\bar{x}, \bar{y}, \bar{z}$
(viii) $x, \bar{y}, z+\frac{1}{2}$

Pyramidal anion IO_{3}^{-}

$\mathrm{I}-\mathrm{O}(1)$	1.81 (2)	$\mathrm{O}(1)-\mathrm{O}(2)$	2.73 (2)
$\mathrm{I}-\mathrm{O}(2)$	1.80 (2)	$\mathrm{O}(1)-\mathrm{O}(3)$	2.78 (2)
$\mathrm{I}-\mathrm{O}(3)$	1.82 (1)	$\mathrm{O}(2)-\mathrm{O}(3)$	2.80 (2)
$\mathrm{O}(1)-\mathrm{I}-\mathrm{O}(2)$	98.2 (7)	$\mathrm{O}(2)-\mathrm{O}(1)-\mathrm{O}(3)$	61.2 (6)
$\mathrm{O}(1)-\mathrm{I}-\mathrm{O}(3)$	100.1 (7)	$\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}(3)$	60.4 (6)
$\mathrm{O}(2)-\mathrm{I}-\mathrm{O}(3)$	$101 \cdot 6$ (6)	$\mathrm{O}(1)-\mathrm{O}(3)-\mathrm{O}(2)$	58.4 (7)
Distorted trigonal bipyramid			
$\mathrm{I}-\mathrm{O}\left(1^{\text {II }}\right.$)	2.93 (2)	$\mathrm{O}(1)-\mathrm{O}\left(1^{1}\right)$	4.74 (2)
$\mathrm{I}-\mathrm{O}\left(3^{\text {vil }}\right.$)	$2 \cdot 90$ (2)	$\mathrm{O}(1)-\mathrm{O}\left(3^{\text {vi }}\right.$)	3.13 (2)
		$\mathrm{O}(2)-\mathrm{O}\left(1^{11}\right)$	$3 \cdot 19$ (2)
		$\mathrm{O}(2)-\mathrm{O}\left(3^{\text {vii }}\right.$)	4.69 (2)
		$\mathrm{O}(3)-\mathrm{O}\left(1^{\text {II }}\right.$)	3.02 (2)
		$\mathrm{O}(3)-\mathrm{O}\left(3^{\text {viI }}\right.$)	3.05 (2)
Barium environment			
$\left.\begin{array}{l} \mathrm{Ba}-\mathrm{O}(1) \\ \mathrm{Ba}-\mathrm{O}\left(1^{1}\right) \end{array}\right\}$	$2 \cdot 90$ (1)	$\begin{aligned} & \mathrm{Ba}-\mathrm{O}\left(2^{\mathrm{III}}\right) \\ & \mathrm{Ba}-\mathrm{O}\left(2^{\mathrm{IV}}\right) \end{aligned}$	$3 \cdot 10$ (1)
$\mathrm{Ba}-\mathrm{O}$ (1ii)	$3 \cdot 16$ (2)	$\mathrm{Ba}-\mathrm{O}\left(3^{\text {vil }}\right.$)	2.82 (1)
$\mathrm{Ba}-\mathrm{O}\left(1^{\text {iv }}\right.$)		$\mathrm{Ba}-\mathrm{O}\left(3^{\text {vili }}\right.$)	
$\mathrm{Ba}-\mathrm{O}\left(2^{v}{ }^{\text {v }}\right.$)	2.73 (2)		
$\mathrm{Ba}-\mathrm{O}\left(2^{\text {vi }}\right)$)			

Fig. 1. View of the iodate polyhedron.

Fig. 2. Projection of the structure of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ on to the $x z$ plane.
$1.833,2 \cdot 600,2.600 \AA$) and $3 \mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}-\mathrm{O}$ $1.795,1.801,1.823,2.771,2.873 \AA$), shows there are no significant differences except a small expansion of the bonds in $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$.

Among the known structures of divalent metal iodates, $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ contains the largest cation $\left(r_{\mathrm{Ba}^{2+}}=\right.$ $1.66 \AA$, Shannon, 1976). As a consequence, the coordination number of Ba^{2+} is ten, with an irregular arrangement of the O neighbours. The projection of the structure on to the $x z$ plane is in Fig. 2.

Thanks are due to Dr Veverka for preparing the single crystals.

References

Abrahams, S. C., Bernstein, J. L., Elemans, J. B. A. A. \& Verschoor, G. C. (1973). J. Chem. Phys. 59, 20072012.

Bach, H. \& Küppers, H. (1978). Acta Cryst. B34, 263-265.
Braibanti, A., Manotti Lanfredi, A. M., Pellinghelli, M. A. \& Tiripicchio, A. (1971). Inorg. Chim. Acta, 5, 590-594.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Elemans, J. B. A. A. \& Verschoor, G. C. (1973). J. Inorg. Nucl. Chem. 35, 3183-3189.
Ghose, S. (1962). Acta Cryst. 15, 1105-1109.
Ghose, S. \& Wan, C. (1974). Acta Cryst. B30, 965-974.
Ghose, S., Wan, C. \& Wittie, O. (1978). Acta Cryst. B34, 84-88.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Liminga, R., Abrahams, S. C. \& Bernstein, J. L. (1975). J. Chem. Phys. 62, 4388-4399.

Liminga, R., Booles, S. R., Ghose, S. \& Wan, C. (1978). Acta Cryst. B34, 2398-2402.
Manotti Lanfredi, A. M., Pellinghelli, M. A., Tiripicchio, A. \& Tiripicchio Camellini, M. (1972). Acta Cryst. B28, 679-682.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

Mercuric Chloride, a Redetermination

By V. Subramanian and Karl Seff
Chemistry Department, University of Hawaii, Honolulu, Hawaii 96822, USA

(Received 1 February 1980; accepted 28 April 1980)

Abstract

HgCl}_{2}\), orthorhombic, Pnma, at $298 \mathrm{~K} a=$ 12.765 (6), $b=5.972$ (3), $c=4.330$ (2) $\AA, D_{o}=$ 5.44 (1), $D_{c}=5.464 \mathrm{Mg} \mathrm{m}^{-3}, Z=4$; at $303 \mathrm{~K} a=$ 12.776 (4),$b=5.986$ (3), $c=4.333$ (2) A. Using all data, the $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ angle is $178 \cdot 6(4)^{\circ}$ and the two $\mathrm{Hg}-\mathrm{Cl}$ distances $[2 \cdot 292(10), 2 \cdot 274$ (10) \AA] average to 2.283 (9) \AA. A refinement using only those data for which $(\sin \theta) / \lambda>0.5 \AA^{-1}$ led to $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}=$ $178.9(5)^{\circ}$ and $\mathrm{Hg}-\mathrm{Cl}$ (mean) $=2.291$ (9) \AA. The shortest non-bonded interactions are $\mathrm{Hg}-\mathrm{Cl}=3.37$ and $\mathrm{Cl}-\mathrm{Cl}=3.33 \AA$. (The final R_{1} value is 0.064 .)

Introduction. Initially, crystals were grown by slowly evaporating a saturated solution of HgCl_{2} in 95% ethanol. A single crystal of extreme dimensions $0.44 \times$ $0.29 \times 0.21 \mathrm{~mm}$ was selected and studied as described below. Full-matrix anisotropic least-squares refinement (Busing, Martin \& Levy, 1962) converged at $R_{1}=$ $\sum\left(\left|F_{o}-\left|F_{c}\right|\right|\right) / \sum F_{o}=0.23$ and $R_{2}=\left[\sum w\left(F_{o}-\right.\right.$ $\left.\left.\left|F_{c}\right|\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}=0 \cdot 25$. The $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ bond angle

0567-7408/80/092132-04\$01.00
and lengths were found to be $178.7(1 \cdot 1)^{\circ}, 2 \cdot 28(3)$ and 2.31 (3) \AA. However, the transmission coefficients in the absorption correction were very small and unreliable, ranging from 0.008 to 0.113 , approximately. Furthermore, the slightly hygroscopic crystal decayed steadily by about 20% and lost its clarity during the data-collection process. To minimize these problems, the work was repeated as follows.

Very small single crystals of HgCl_{2} were prepared by cooling a warm saturated toluene solution of HgCl_{2}. Crystals formed as needles elongated along a with lateral (001) and ($00 \overline{1}$) faces, as before. A single crystal of extreme dimensions $0.20 \times 0.07 \times 0.05 \mathrm{~mm}$ was selected under paraffin oil and sealed in a fine glass capillary. X-ray diffraction data collected with this crystal were corrected for absorption and refined to give $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}=179.5(4)^{\circ}$ and $\mathrm{Hg}-\mathrm{Cl}=2.272$ (13) and 2.262 (13) \AA, but the error indices remained relatively high: $R_{1}=0.11$ and $R_{2}=0.14$. It is probable that available moisture attacked the fine hygroscopic (c) 1980 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35305 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

